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Abstract

Managing demand for electrical energy allows genera-
tion facilities to be run more efficiently. Current systems
allow for management between large industrial consumers.
There is, however, an increasing trend to decentralize en-
ergy resource management and push it to the level of in-
dividual households, or even appliances. In this work we
investigate the suitability of using adaptive clustering to im-
prove the scalability of decentralized energy resource man-
agement systems by appropriately partitioning resources.
We review the area of distributed energy resource manage-
ment and propose a simple yet realistic model to study the
problem. Simulations using this model show that straight-
forward clustering and distributed planning methods allow
systems to scale, but may be limited to only a few hundred-
thousand appliances. Results indicate that there is an op-
portunity to apply adaptive clustering techniques in order
to discover more advanced grouping criteria that would en-
able groups to change as appliances’ behavior changes.
The simulations further suggest that even an extremely lim-
ited exchange of information between clusters can greatly
improve management solutions.

1 Introduction

The electricity industry in many countries is facing a
number of pressures due to increasing demand, the increas-
ing “peakiness” of demand, and the prospect of carbon ac-
countability. Managing demand for power is an alternative
to the traditional solution of investing in expanding cen-
tralized generation capacity and the associated infrastruc-
ture. Controlling distributed energy resources, customer
loads and small generators located close to load centers, in
response to price signals and network constraints can give
relief from the volatility of wholesale electricity prices and
can assist constrained distribution networks during summer
and winter demand peaks. Such responses also provide
a mechanism to reward customers who choose to manage
their energy use thoughtfully.

The inherently distributed nature of energy resource
management, and the large savings to be made by even
a small gain in efficiency, make it a compelling applica-
tion in which to apply decentralized planning and con-
trol algorithms. Software resource agents running on cus-
tomer premises or embedded in appliances, can be used to
plan future energy consumption and to shift loads accord-
ing to constraints placed on the system. Australia’s Com-
monwealth Scientific and Industrial Research Organisation
(CSIRO) currently has a live multi-agent test-bed for mon-
itoring and controlling industrial loads and generators in
electricity distribution networks [6]. The physical deploy-
ment of the GridAgents Platform is located in the CSIRO
Energy Center in Newcastle, New South Wales, Australia.

To demonstrate the feasibility of using such platforms in
the domestic household area, it is necessary to address sys-
tem scalability. Current agent-based energy resource man-
agement systems employ central auctioneers or aggregat-
ing agents to combine information on energy consumption
from resource management agents and feed this informa-
tion back to the agents. The use of central components, and
more significantly their communications infrastructures, is
undesirable in systems that contain hundreds of thousands
or millions of devices. We therefore investigate the possi-
bility of clustering devices into more manageable, relatively
independent, groups. In particular, in this paper we address
two questions: (1) to what extent is the quality of global
solutions reduced by partitioning agents into groups, and
(2) is it sufficient to choose these groups at random or can
agents be classified so as to create more effective groups?

To avoid demand peaks, resource management agents
must be coordinated. One alternative is to cluster agents
into separately coordinated groups. Even more interest-
ing is the possibility of creating dynamic adaptive clusters
which instead of using fixed criteria can group agents ac-
cording to unforeseen behaviors and current demand char-
acteristics. Before developing such complex algorithms,
however, it is necessary to assess the problem area to de-
termine if they are likely to improve on simpler methods. In
this paper we make the following contributions to the study
of using cooperating agents to reduce short term peaks in



electricity demand:

• We define a simple yet realistic scenario in which to
study the problem and propose and test a minimal de-
mand planning/coordination algorithm which can be
used as baseline when developing more advanced plan-
ing and control mechanisms.

• We study decentralizing the coordination and planning
problem by dividing agents into independent clusters.
We show that for small numbers of clusters the quality
of global plans is not significantly reduced by parti-
tioning the problem in this manner.

• We show that the choice of clustering criteria can make
a difference to the system’s ability to stabilize demand.

• We demonstrate that for larger numbers of clusters an
extremely limited exchange of information between
clusters can greatly improve global plans.

The work presented in this paper considers an abstract
model of the energy requirements of simple refrigeration
devices, verified by additional experiments using measure-
ments of the behavior of a real appliance. The results listed
above justify further research into the area of adaptive de-
centralized coordination and clustering algorithms for dis-
tributed energy resource applications, involving larger scale
test-beds and the collection of more varied measurement
data.

2 Background and Related Work

This section provides background on electricity genera-
tion and distribution, in particular in the Australian market,
and describes current work on using agents for distributed
energy resource management. Adaptive decentralized clus-
tering methods will be described in Section 5 in relation to
our experimental results.

2.1 Demand Management

The management of energy resources can take place on
a variety of time-scales. Seasonal peaks in demand, for
instance caused by widespread use of air conditioning in
hot weather, can place considerable strain on the power
grid. When demand exceeds capacity in a grid sector,
brownouts can occur, making power temporarily unavail-
able to customers in the area. Additionally, power draining
from neighboring sectors can cause relays to malfunction,
resulting in costly blackouts. Measures for managing sea-
sonal demand peaks include intelligent load shedding, in
which certain areas are strategically blacked out, or con-
tract agreements are made with larger consumers for supply
to be reduced when necessary, in return for lower prices.

On a weekly and daily time scale, energy demand also
follows regular highs and lows, corresponding to business
hours and common daily routines such as meal times. Many
energy retailers employ a dual pricing system with peak
and off-peak hours to encourage households to shift flex-
ible tasks, such as washing, to times when there is spare
capacity.

While seasonal, weekly, and daily trends are the most
visible to energy consumers, changes in demand on a much
shorter time scale are likely to profit most from control by
agent technology. In Australia, energy retailers purchase ca-
pacity, in the form of hedge contracts, many months in ad-
vance, according to forecasts of future needs. Since this en-
ergy use is planned, it is relatively cheap, with a price near
the average expected price, typically around $40 (AUD) per
megawatt hour. However, if customer demand exceeds the
pre-purchased quota, additional energy must be bought on
a spot market. In this market, prices are set per five minute
interval. In January 2007 spot market prices in New South
Wales ranged between $10.80/MWh and $5091.95/MWh
[10]. Managing resources so as to reduce short term peaks
in demand can thus result in significant savings. Micro-
managing a device by shifting its energy consumption by a
few minutes can have very little impact on the functioning
of some appliances, but requires constant monitoring and
communication, making it an appropriate task for computer
agents.

2.2 Energy Generation and Distribution
Infrastructure

Large energy producers and consumers (including retail-
ers) in eastern Australia participate in a single wholesale
market, the National Electricity Market (NEM) [10]. Within
this market energy production is centrally managed so as to
meet demand, set fair prices, and ensure reliability of sup-
ply. Producers submit bids stating the amount of energy
they can generate at what cost and consumers submit pre-
dictions for consumption. These are matched, the lowest
cost producers are instructed to supply energy, and a sin-
gle price is set for all participants. This planning process is
based on short-term forecasts of the volume of energy re-
quired over the next 24 hour period. Generators are sched-
uled in 5 minute dispatch intervals. Prices are set for each
dispatch interval and provide a signal by which consumers
can manage their individual demand. These dispatch and
prediction intervals influence the time-scale at which elec-
tricity management agents can operate. The large volumes
of electricity used in the NEM make it impossible to store
energy for future use. This means that the NEM is unable
to respond quickly to significant unpredicted changes in de-
mand. On the whole, the less oscillation there is in demand,
the better.



The NEM covers an area 4000 miles long, and serves
eight-million end-use customers. Though it is possible for
electricity to be traded over a distance of 4000 miles [13],
transport of electricity between regions is limited by the ca-
pacity of the high-voltage transmission lines that intercon-
nect them. Thus, in theory the whole of the NEM can be
seen as a single very large-scale computational system in
which tradeoffs in power use can be made between agents,
regardless of location. In practice some restrictions apply
and agent location may place some constraints on which
agents may interact with each other. Currently, informa-
tion on electricity demand is only exchanged between major
players in the market. However, the installation of “smart-
meters”, and the ability to use transmission lines to carry
data, means that in the future, even small consumers such
as households could participate in energy management sys-
tems [2, 7].

2.3 Agents for Distributed Energy Re-
source Management

Previous research on multi-agent systems for electric-
ity management has mainly focused on agent-based simu-
lations of electronic market mechanisms [20, 18]. A couple
recent efforts described below are building deployed agent
systems.

The European CRISP project [17] carried out field stud-
ies in Sweden to assess the advantages of using intelligent
agent and electronic market technologies. In the project’s
system model the electricity grid is divided into local areas,
called cells. Coordination between agents and cells takes
place through the Powermatcher electronic market [9]. In
Powermatcher, agents within a cell submit bids for electric-
ity production or use to a designated aggregator, called an
SD-matcher, which manages the cell. Aggregated bid infor-
mation is passed up a hierarchical tree of aggregators. The
market equilibrium prices is calculated at the root node, and
distributed back down the tree. This network configuration
remains fixed over the duration of system operation.

Market mechanisms coordinate current power consump-
tion and production based on a single price. Energy needs
of devices at a particular time are, however, often depen-
dent upon device behavior at other time intervals. Multi-
commodity combinatorial markets can be used to coordi-
nate prices over a number of time intervals, but quickly be-
come overly complex as the number of intervals grows [4].

The GridAgents framework, developed for the Aus-
tralian CSIRO testbed, explores a variety of alternatives
to market-based control [6]. In particular, a method that
uses genetic optimization to coordinate agent plans has been
studied. A cap on energy use for a given period is set for a
group of agents, which accordingly rearrange plans to min-
imize cost whilst considering local objectives [5].

Figure 1. CSIRO cool-room agent operation.

Both the CRISP and GridAgents projects propose di-
viding agents into groups in order to meet system scala-
bility objectives. In the CRISP project these groups take
the form of cells, whose composition is based on the physi-
cal locations of devices. The project report, however, notes
that group configurations which differ with the seasons are
likely to improve on the system’s ability to match supply to
demand [17]. The GridAgents method of genetic optimiza-
tion is also based on coordination within groups, of a size
of around 500 agents. The project aims to further explore
clustering methods by which these groups are defined [6].
In this paper we provide a detailed investigation of the fac-
tors involved in successfully creating improved clusterings
for such systems.

3 Methodology and Scenario

The experiments presented in Section 4 evaluate the ef-
fectiveness of clustering distributed energy resources for the
purposes of coordinating planned energy demand. Coor-
dinating energy use locally within clusters of resources in
place of centrally coordinating all resources has several ad-
vantages. First, it removes a dependance on a single cen-
tral point of failure, improving system robustness. Sec-
ond, it reduces the communication delay between resource
agents and the coordinator, allowing planning to be done on
a shorter time scale, or for additional planning/coordination
rounds to take place. Third, it reduces the complexity of the
coordination problem, allowing coordination to be done by
a simpler, cheaper, controller. Fourth, it creates a system
which is more scalable as adding new resource agents only
requires creating additional clusters, rather than expanding
the capacity of a central coordinator.

There are, however, a number of questions involved with
the relative quality of centralized coordination of plans ver-
sus distributed cluster-based coordination. Clusters only



have partial information on the total energy use of the sys-
tem, implying that distributed coordination should produce
a global plan that is worse than found with a central coor-
dinator. We would like to know exactly how much worse
in order to be able to weigh the relative costs and benefits
of clustering resources. Additionally, there are questions
about how to create clusters: what size should clusters be,
what composition function should be used to choose cluster
members, should cluster membership be fixed or dynamic?
Creating a fixed set of fixed size clusters with random mem-
bership would greatly simplify the coordination problem.
We thus, in particular, would like to know how much of an
advantage more advanced clustering methods would have
over simpler settings.

The experiments in Section 4 are designed to examine
the difference between joint plans coordinated only within
clusters and those produced using centralized coordination,
and to compare the quality of joint plans produced using
random versus carefully selected clusterings. In this sec-
tion we first present out experimental methodology, and in
particular the energy resources, coordination algorithm, and
clustering criteria we consider.

3.1 Scenario

We consider a scenario where the power consumption of
individual refrigerators in a city must be coordinated so as
to keep their total energy use as constant as possible for a
given short period. Exact data on the preferable scale of
this problem, the precise range of energy requirements of
household refrigerators, or the possible planning behaviors
of agents controlling refrigerators is unavailable. In the fol-
lowing sections we describe the existing data and the esti-
mations we use to set parameters for our experiments.

Refrigerators and freezers typically make up over 20% of
total residential electricity consumption in Australia [1]. We
thus focus on modeling refrigerators as our resource agents,
being the largest single end-use offender of household en-
ergy consumption. Nearly all households in Australia have
at least one refrigerator and about 30% own two. Nearly
60% of households own a separate freezer [1]. While it
may possibly be desirable to coordinate the behavior of all
devices within the NEM, initial systems are likely to be
more modest. We consider the case of coordinating re-
frigerators in the city of Newcastle NSW which has a sin-
gle 600MW coal-fired power plant, serving approximately
200,000 households. We would thus like to ensure system
scalability to around 400,000 resource agents.

Our model of energy resources and their consumption
requirements focuses on representing variable flexibility of
resource agents in adjusting initial plans. During a typi-
cal planning cycle in the multi-agent systems on which we
base this work, resource agents send initial plans to a co-

ordinator, which computes aggregate energy use then sends
suggestions for changes to the agents. In general, this plan-
ning and coordination occurs in multiple cycles in which
agents make readjustments, send their new plans to the co-
ordinator, and receive additional suggestions. Plans are also
readjusted and re-coordinated as predictions of future en-
ergy use changes. In this study we consider relatively sim-
ple agents. For this reason we simplify the planning process
to a single round in which agents each send multiple possi-
ble plans for the coordinator to select among. We assume
that once set, and agent is free to follow its chosen plan. By
varying the number plans an agent submits we can model
resources that are more or less flexible in their energy con-
sumption profiles.

3.2 Energy Resources

In this study we consider a single type of energy re-
source, an abstract cool-room, of which refrigerators are
an example. Cool-rooms consist of an insulated chamber
which must be kept within a given temperature range, and a
compressor that can be turned on to lower the temperature.
Their basic behavior is straightforward, when the compres-
sor is off the room’s temperature slowly rises towards the
outside temperature, until the maximum of the temperature
range is reached. The compressor is then turned on until
the chamber cools to the minimum value of the temperature
range.

The simple cool-room agents studied in this paper are
modeled after the basic operation of the more advanced
CSIRO cool-room agent currently being used to control in-
dustrial cool-rooms as well as domestic-sized refrigerators
in the Newcastle Energy Centre. Figure 1 shows the mon-
itoring interface of the agent controlling the canteen cool-
room1. The agent is given the goal of keeping the temper-
ature of the cool-room within a certain range by turning on
and off either the compressor or a fan. The agent receives
data on current electricity prices and attempts to avoid using
energy when prices spike. Predictions for future plans are
made based on the current temperatures inside and outside
the cool-room, and a model of heat-loss properties based on
a history of temperature behavior.

Realistic models of cool-rooms show that their short-
term power consumption follows a periodic square wave
[20], as illustrated in Figure 2. In this study we model re-
frigerators with three parameters, a compressor cycle length
(C) that states the length of one period of this square wave,
an on-time (T ), which states the amount of time in which
the compressor is on during that period, and a power value
(P ) that gives the amount of power used by the compressor
when on.

1Available online at http://demc.com.au/DEMC/Canteen/Canteen.aspx.



Figure 2. Plan Representation

We base the experimental values of the cool-room pa-
rameters on data giving the typical energy consumption per
year of refrigerators and freezers currently sold in Australia
[1]. The values of C and T for a refrigerator vary depending
on use. From observations of refrigerators we estimate that
cycle lengths vary between 20 and 60 minutes. Whirlpool’s
customer service website states that compressors in typical
refrigerators are on for between 40% and 80% percent of
the time. Based on these estimates we create a set or ran-
dom refrigerator profiles for our experiments by choosing
the yearly power consumption of an appliance at random
from the list of Australian refrigerators, and choosing val-
ues of C and T uniformly at random from the ranges given
above. The power used by the compressor, P , is calculated
from the yearly power consumption, assuming that C and T
are averages for the year. Plans are divided into one minute
intervals in which the power consumption is either P when
the compressor is on or 0 when the compressor is off. Each
refrigerator agent is given an initial plans starting at a ran-
dom point in its compressor cycle.

In these experiments we will consider planning based
on expected energy use of a refrigerator for a term of two
hours, to cover behavior over several compressor cycles.
Because refrigerators only need to maintain a given temper-
ature range, planning agents can be very flexible in choos-
ing exactly when to turn compressors on or off. They thus
have the option of creating a wide variety of plans for a
given 120 minute interval. Since we are only interested in
the effect of flexibility, we do not model exactly how agents
can choose to change these plans. Instead we make the sim-
plifying assumption that any plan that involves a time shift
of the periodic power consumption square wave is accept-
able to maximally flexible refrigerators. A refrigerator thus
has a finite set of alternative energy-use plans it can follow,
Π = {π0, . . . , πk−1}. Given a refrigerator’s initial plan, π0,
each alternative plan πi is defined by a time shift si such
that the power consumption at time t in πi is that of plan π0

at time t − si. In our experiments we consider time shifts
s that are multiples of one minute intervals. Thus a refrig-
erator with a compressor cycle length of C minutes has C
possible plans. Less flexible refrigerators are modeled as
accepting only smaller subsets of plans.

3.3 The Desync Coordination Algorithm

We study a simple heuristic coordination algorithm that,
given a fixed set of possible plans for each resource agent,
attempts to choose the combination of plans that results in
the best aggregate plan. This could be done with straight-
forward brute-force search of all the possible combinations.
However, such a search quickly becomes prohibitively ex-
pensive as the number of resources considered grows. In-
stead we use a simplifying heuristic in which the resources
are chosen sequentially, and their plans are selected accord-
ing to a metric, without attempting to find the exact optimal
combination. Plan coordination thus follows the sequence:

1. Each energy resource xi sends to the coordinator its set
Πi of possible acceptable plans.

2. The coordinator goes through the resources sequen-
tially, according to a certain order, and for each re-
source selects the plan that would best fit in the current
aggregate. The selected plan is added to the current
aggregate. The metric used to determine the “best fit”
is described in Section 3.4.

3. The coordinator notifies each agent which of its possi-
ble plans was selected and is to be carried out.

The Desync coordination algorithm has the advantage
that it is simple, requires minimal communication between
the resource agents and the coordinator, and requires mini-
mal computation by the coordinator. It has the disadvantage
that there is no feedback to the agents which might have
been able to be more flexible in their plans. A further dis-
advantage is that a complete search is not made to find the
optimal combination of plans. For the purposes of analyz-
ing the possible benefits of clustering, however, this simple
algorithm is sufficient and provides a clear picture of the ef-
fects of clustering. The case for more complex algorithms
is discussed in Section 5.

3.4 Plan Selection

The coordinator in our experiments aims to minimize the
peak power usage in the aggregate plan. Aggregation of
two plans, say πj and πk, denoted as πj + πk, simply in-
volves adding the planned powers for each time interval.
We denote by f(π) the maximum (peak) power used in the
plan π over its entire duration, in our case the time inter-
val [0, 120]. For a given current aggregate plan, πα, and a
given set of possible plans for a resource agent, Π, the co-
ordinator chooses the agent plan πi for which f(πα + πi)
is minimized. The full Dysnc algorithm is summarized in
Algorithm 1.

Energy prices paid by energy distributors in Australia
have two components, a price for a fixed amount of capac-
ity, set in advance, and a spot price for energy use that ex-
ceeds that capacity. In this paper we do not consider the



more complex planning problem of matching energy use to
current costs, or a changing “cap” on energy demand [5].
We leave this problem to future work, discussed in section
5. Our main goal is to show that the underlying power con-
sumption of agents can be coordinated so as to reduce vari-
ability in the “fixed” part of the energy use.

Algorithm 1: Desync algorithm.
Set the current aggregate plan πα to zero usage1:
for each resource agent xi ∈ X do2:

retrieve set of plans Πi3:
set the chosen plan for xi as πi = πi,04:
set temporary maximum as µ = f(πα + πi)5:
for each subsequent plan πi,j ∈ Πi do6:

if f(πα + πi,j) is less than µ then7:
set πi = πi,j8:
set µ = f(πα + πi)9:

end10:
end11:
update current aggregate as πα = πα + πi12:
send chosen plan πi to the agent xi13:

end14:

4 Experiments

In this section we present experiments to examine the
following questions:

• How effective is Desync coordination? (Section 4.1)
• To what extent does reducing the flexibility of re-

sources reduce the Desync algorithm’s ability to co-
ordinate energy use? (Section 4.2)

• In respect to planning, is actual cool-room behavior
well represented by our abstract cool-room model?
(Section 4.3)

• To what extent does dividing resources into clusters
reduce the Desync algorithm’s ability to discover im-
proved global plans? (Section 4.4)

• Does clustering similar resources together differ from
random clustering? (Section 4.5)

• How does system behavior change as the number of
agents is increased? (Section 4.6)

• Does adding communication between clusters improve
on non-interacting clusters? (Section 4.7)

4.1 Basic Desync Coordination Ability

Figure 3 compares two example aggregates of the plans
of 640 maximally flexible refrigerators. The figure shows
the aggregate power used at each minute interval when the
refrigerators are left to choose their own plans, and the ag-
gregate for the same refrigerators after Desync coordina-
tion. The figure shows that Desync coordination is able to
effectively shift individual behaviors so as to flatten peaks
in the overall power use.

In general the alternative plans for a resource agent can
have different total power consumptions over the total time

Figure 3. Aggregate power use, with and
without coordination.

Figure 4. Distribution of peak power, less
flexible agents.

interval. In order to keep the power consumption of all
plans equal, and thus aggregate plans using different pos-
sible plans comparable, we artificially raise or lower the
compressor power slightly when a shifted plan results in a
refrigerator being on for a different period of time than in its
initial plan. Thus a lower maximum power for a plan indi-
cates a more constant plan. Without planning the maximum
power used is 48.55 kW (out of a maximum possible 71.90
kW) while planning reduces this value to 45.01 kW.

The aggregate plans of refrigerators can vary, both with
and without planning, because in the simulations each re-
frigerator chooses its initial plan at random for each trial and
because agents can be aggregated in a different order in each
trial. Without planning, the distribution for 1000 trials of the
peak aggregate power varied between 46.00 kW and 51.51
kW. With planning, peak power consistently improves on
these values, and is more predictable, varying from 44.70
kW to 45.27 kW.

4.2 Reducing Agent Flexibility

We next examine the effects of reducing the flexibility of
resource agents in changing their consumption plans. We
repeat the experiment from Section 4.1, but instead of al-
lowing the coordinator to choose out of any possible plan
for each refrigerator, each refrigerator submits only a small
number of randomly chosen plans. Fully flexible refrig-
erators have between 20 and 60 possible plans. Figure 4



Figure 5. Aggregate power use, measured re-
frigerator data.

shows the distribution of peak power for coordinated aggre-
gate plans when refrigerators submit only 2, 4 or 8 possible
plans. Even with very few plans to choose from, the Desync
algorithm is able to find almost as good an aggregate plan
as it does when given fully flexible agents.

4.3 Comparison to an Actual Refrigerator

Actual refrigerators have more complex behavior than
the idealized cool-room model. We measured the behav-
ior of a standard refrigerator over a period of several days.
Without user intervention power usage of the appliance fol-
lowed a regular square wave, in which the compressor was
on for about 20 minutes then off for about 15 minutes. With
user intervention however, spikes in power occurred when
the door was opened, turning the light on. Opening the door
also caused the compressor to stay on for longer. Every 24
hours a very high spike in power use occurred followed by
a long cooling period, due to the operation of the automatic
defroster.

The irregularity of behavior of actual appliances makes
the coordination problem more difficult than for the model
cool-rooms. Figure 5 shows example aggregates, with and
without coordination, for 94 virtual measured refrigerators,
created by breaking several days worth of measurements
into two hour segments. Each virtual refrigerator is given
8 plans, made by shifting its initial plan by successive one
minute intervals. Figure 5 shows that while Desync co-
ordination becomes less effective in the non-ideal case, it
still has a noticeable effect on lowering peaks in aggregate
power. We will discuss possible effects of the behavior of
real appliances further in Section 5.

4.4 Effect of Clustering

Figure 6 plots the peak power found in the global ag-
gregate when dividing agents into 1, 2, 4, 8, 16, 32, 64,
an 128 clusters, chosen at random for 640 agents. Values
for the aggregate before and after coordination are plotted,
marked at the average peak power found over 100 trials.

Figure 6. Peak power: random clusters.

Error bars, for the coordinated aggregate, and the shaded
region, for the uncoordinated aggregate, indicate the mini-
mum and maximum values seen. The graph shows that as
agents are separated into more clusters, the aggregate plan
formed by running the Desync algorithm independently in
each cluster deteriorates. Interestingly, with more than 32
clusters the coordinated aggregate tends to be worse than
the average aggregate obtained when no coordination was
done at all and each refrigerator was simply left to follow
its original randomly chosen plan. For less than 32 clusters
however, clustering is an effective manner of distributing
the coordination problem. With 128 clusters, coordination
has a markedly detrimental effect on the systems. In the fol-
lowing experiments we shall investigate why distributed co-
ordination performs so poorly with larger numbers of clus-
ters.

4.5 Non-Random Clusters

The behavior seen in Section 4.4 should improve if the
aggregate plans created in the individual clusters improve.
The Desync algorithm’s ability to coordinate plans should
thus be enhanced by better clusterings in which refrigerators
that have more compatible behaviors are grouped together.
In Figure 7 clusters are created not at random, but so that
clusters contain refrigerators with similar values of P , the
power used by their compressor. This should make it easier
for the Desync algorithm to make use of pairs of refriger-
ators whose plans can be shifted so that they complement
each other. In fact, the figure shows that this power-based
clustering criterion yields clusters with about the same be-
havior as random clusters.

In Figure 8 clusters are created in which refrigerators
with similar compressor cycle times, C, are grouped to-
gether. Such frequency-based clustering does improve the
aggregate plans. From this we conclude that clustering cri-
teria used when dividing up agents does have an impact on
the overall system behavior. The optimal criteria is likely
to depend strongly on the actual behavior of the individual
agents. We thus leave a further exploration into clustering
methods for future work, discussed in Section 5.



Figure 7. Peak power: P -based clusters.

Figure 8. Peak power: C-based clusters.

4.6 Clustering and Scalability

A possible explanation for the poor coordination ability
when agents are divided into more than 32 clusters is the
small size of these clusters. Dividing 640 agents between
32 clusters produces clusters with only 20 agents each. It
is possible that the Desync algorithm simply requires more
agents to be able to produce acceptable aggregate plans.

We repeat the frequency-based clustering experiment
from Section 4.5 using twice as many agents. We find, how-
ever, almost no difference in the influence of the number of
clusters on coordination ability, in spite of the fact that the
clusters in this experiment are twice as large. This indicates
that there exists a limitation on the degree to which the en-
ergy resource coordination problem can be decentralized by
dividing it into separate more manageable problems, inde-
pendent of the overall size of the system.

Intuitively, this limitation can come from the nature of
coordination itself. Looking back at the example aggre-
gates in Figure 3 it can be seen that while coordination
lowers the peak power in an aggregate, in doing so it in-
creases the amount of time during which the aggregate is
relatively high. When combining a two random aggregates,
the chance of two high points overlapping thus increases af-
ter coordination. As the number of clusters increases the
chance of undesired overlaps also increases. Hence, inde-
pendent coordination in large numbers of clusters can result
in worsening the global aggregate. Table 1 illustrates this.
It compares coordinated and uncoordinated aggregates for
16 randomly chosen clusters, in an instance when the unco-

Figure 9. Frequency-based hierarchical clus-
tering.

ordinated aggregate is slightly better than the coordinated
one. The left side of the table shows the peak power in the
individual plans of each of the clusters. It shows that within
clusters coordination consistently improves over uncoordi-
nated behavior, by between 8.5 and 21.5 percent. The right
side of the table shows the result of aggregating the plans
from the given clusters and those in the preceding lines. It
shows that as more clusters are added to the aggregate, the
global improvement made by coordination within clusters
decreases, in spite of the local improvements made.

4.7 Hierarchical Desync Coordination

The experiment in Section 4.2 shows even a relatively
small amount of flexibility on the part of individual re-
sources allows Desync coordination to improve overall ag-
gregates. This property may provide a solution to the lim-
itations encountered when dividing the system into sepa-
rate clusters. It indicates that by exchanging only a small
amount of information, clusters may be able to sufficiently
coordinate their plans. We test this by creating a simple
hierarchical version of the Desync coordination algorithm.
Resources are divided into separate clusters in which the
Desync coordination algorithm is run twice, to produce two
possible aggregate plans. These plans are then aggregated
by a single higher level aggregator, again using Desync co-
ordination. Figure 9 shows the result, when using frequency
based clustering for 1280 agents. Compared to the results
of frequency based clustering without the second level of
coordination, this very low degree of synchronization be-
tween clusters does indeed significantly improve the overall
aggregate plans. Better chosen information sharing between
clusters could possibly have an even greater effect, and is a
topic for future research, as discussed in Section 5.

5 Discussion and Future Work

The scenario in Section 3 set a goal of building a clus-
tered energy planning system that can scale to at least



peak power of individual clusters peak power in aggregate of current and preceding clusters
coordinated (kW) uncoordinated (kW) improvement aggregate, coordinated (kW) aggregate, uncoordinated (kW) improvement

cluster 1 3.01 3.63 17.26% cluster 1 3.01 3.63 17.26%
cluster 2 3.07 3.40 9.51% clusters 1-2 5.94 6.57 9.70%
cluster 3 2.93 3.61 18.88% clusters 1-3 8.71 9.24 5.65%
cluster 4 3.22 3.77 14.49% clusters 1-4 11.58 12.51 7.45%
cluster 5 3.31 3.62 8.66% clusters 1-5 14.80 15.47 4.38%
cluster 6 3.16 3.65 13.36% clusters 1-6 17.72 18.93 6.39%
cluster 7 2.79 3.25 14.18% clusters 1-7 20.31 21.27 4.50%
cluster 8 3.08 3.92 21.51% clusters 1-8 23.08 24.64 6.32%
cluster 9 2.93 3.41 14.03% clusters 1-9 25.88 27.70 6.56%
cluster 10 3.28 4.04 18.84% clusters 1-10 29.04 30.93 6.11%
cluster 11 3.70 4.45 16.92% clusters 1-11 32.58 33.56 2.92%
cluster 12 3.37 3.86 12.79% clusters 1-12 35.92 37.38 3.91%
cluster 13 2.93 3.46 15.33% clusters 1-13 38.57 40.42 4.58%
cluster 14 3.51 4.35 19.29% clusters 1-14 41.64 42.62 2.30%
cluster 15 3.00 3.28 8.59% clusters 1-15 44.57 44.76 0.41%
cluster 16 3.14 3.59 12.56% clusters 1-16 47.59 47.46 -0.27%

Table 1. Effect of aggregating plans from random clusters with 40 agents each.

400,000 resource agents. Section 4 shows that using
straightforward algorithms a system can easily be broken
into 16 clusters in which coordinated energy use consis-
tently improves on uncoordinated use, or up to 64 clusters in
which coordinated use usually improves on uncoordinated.
This gives clusters of between 25,000 and 6,250 agents.
Given the simplicity of the Desync coordination algorithm,
clusters of a few thousand agents are probably acceptable.
However, there is a justifiable need to explore more sophis-
ticated methods to both improve the number of clusters into
which the system can be divided, and to increase the degree
of improvement in power use created by coordination.

The experiments in Section 4 demonstrate three factors
affecting global behavior of the system: the flexibility of
individual agents in shifting power-use, the composition of
clusters within which plans are coordinated between agents,
and the degree of communication to coordinate plans be-
tween clusters. Each of these areas deserves further study.

Coordinating Resource Agents: This paper examined
one difficulty in coordinating planned energy use: a lack
of flexibility on the part of resource agents. Another main
stumbling block is the unpredictability of the devices con-
trolled by the agents. For this reason plans need to be con-
stantly re-coordinated as predicted power-use changes. Re-
frigerators are amenable to planning because they can in
effect store energy using the thermal mass of their contents.
Other appliances, like pool pumps can be flexible because
the exact time at which they operate is unimportant. There
are, however, many devices, like light-bulbs that must act
on demand. Given a fixed set of devices there is, thus, a
limit on the degree to which the variability of their energy
use can be controlled. On the other hand, the increasing
prevalence of household devices with significant battery ca-
pacities, such as electric vehicles, is likely to make the plan-
ning and coordination problem easier, as their reserves can
be called upon to make up for a lack of flexibility or pre-
dictability elsewhere.

Clustering: The presented experiments show that
choosing more appropriate criteria for dividing agents into
clusters can make coordination easier by matching up de-
vices whose power consumption is complementary. The
main problem that remains is how to discover the best

clustering criteria. In addition, since device behavior can
change over time, using the best criteria requires that clus-
ters also change. A number of algorithms have shown
that decentralized dynamic clustering is possible given pre-
defined criteria [12, 16]. Clustering algorithms that dis-
cover the correct criteria based on current application re-
quirements are still in early stages of research [11, 15, 19].
To study these further, more detailed models, test-beds and
measurements are required.

Cluster Coordination: The experiments further indi-
cate that some degree of coordination between clusters is
needed. In current distributed energy resource systems this
coordination is achieved through central auctioneers or ag-
gregators. Inter-cluster coordination can also be imposed by
means of energy caps: fixed limits on the amount of energy
that should be used in a given period. A cap is usually ex-
pressed as a directive from an energy utility company to re-
duce electricity consumption for peak demand periods. Our
experiments indicate that low quality information can also
serve to coordinate clusters, suggesting that less structured
aggregation algorithms may be also applicable [8].

Self-organization: The presented solution is hybrid —
it combines distributed cluster-based coordination with a
centralized method of determining clusters and hierarchi-
cal coordination between clusters. Ideally, all of these func-
tions would be achieved in a completely self-organized way.
Self-organization is typically defined as “a process in which
pattern at the global level of a system emerges solely from
numerous interactions among the lower-level components
of the system. Moreover, the rules specifying interactions
among the systems components are executed using only lo-
cal information, without reference to the global pattern” [3].
There are, however, a few reasons why a hybrid solution
is more suitable at this stage. First, the “numerous inter-
actions among the lower-level components” that are essen-
tial for self-organization are often costly in terms of com-
munication overhead. For example, many peer-to-peer ap-
proaches for distributed energy resource management are
not feasible if the resource agents are limited to power-line
communications. Second, self-organization results in non-
deterministic outcomes. Often, this is one of its strengths,
and one should not avoid far-from-equilibrium dynamics



and symmetry-breaking behavior but rather exploit the op-
portunities for creating stable patterns out of fluctuations
[14]. However, in order to be adopted by industry, the non-
determinism of self-organizing patterns requires an appro-
priate verification process, and the search for most suitable
verification methodology is still open. Finally, a complete
self-organizing system for distributed energy resource man-
agement would depart too strongly from incremental ad-
vancements typically accepted by the industry. A more re-
alistic approach suggests, instead, to deploy hybrid systems
such as the one described in this work as an intermediate
step on the path towards a completely self-organizing solu-
tion.

6 Conclusions

This paper examined two questions about the use of
clustering in order to improve scalability of distributed en-
ergy management systems: (1) to what extent is the quality
of global solutions reduced by partitioning resources into
groups, and (2) is it sufficient to choose these groups at ran-
dom or can resources be classified so as to create more ef-
fective groups? We have presented a simple model of en-
ergy management, and a simple coordination algorithm to
study these questions. Experiments have shown that divid-
ing resources into independently coordinated clusters im-
proves the system’s scalability, but the reduced quality of
aggregate plans limits the number of potential clusters. We
demonstrated that three aspects affect this limit: the flexibil-
ity of energy-use plans for individual resources, the criteria
used to divide resources into clusters, and the information
exchanged to coordinate plans between clusters.
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